non-abelian, soluble, monomial
Aliases: C62.8Dic3, C3.A4⋊C12, C6.S4⋊C3, C6.7(C3×S4), (C3×C6).5S4, C32.A4⋊C4, C22⋊(C9⋊C12), C23.(C9⋊C6), C32.(A4⋊C4), (C2×C62).5S3, C2.1(C32.S4), (C2×C3.A4).C6, C3.1(C3×A4⋊C4), (C2×C32.A4).C2, (C22×C6).4(C3×S3), (C2×C6).2(C3×Dic3), SmallGroup(432,249)
Series: Derived ►Chief ►Lower central ►Upper central
C3.A4 — C62.Dic3 |
Generators and relations for C62.Dic3
G = < a,b,c,d | a6=b6=1, c6=b2, d2=b2c3, cac-1=ab=ba, dad-1=a4b3, cbc-1=a3b4, dbd-1=a3b2, dcd-1=b4c5 >
Subgroups: 314 in 72 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2×C4, C23, C9, C32, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C18, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, 3- 1+2, Dic9, C3.A4, C3.A4, C3×Dic3, C62, C62, C6.D4, C3×C22⋊C4, C2×3- 1+2, C2×C3.A4, C2×C3.A4, C6×Dic3, C2×C62, C9⋊C12, C32.A4, C6.S4, C3×C6.D4, C2×C32.A4, C62.Dic3
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, S4, C3×Dic3, A4⋊C4, C9⋊C6, C3×S4, C9⋊C12, C3×A4⋊C4, C32.S4, C62.Dic3
(1 10)(2 14 8)(3 18 15 12 9 6)(4 13)(5 17 11)(7 16)(19 34 31 28 25 22)(20 29)(21 33 27)(23 32)(24 36 30)(26 35)
(1 4 7 10 13 16)(2 5 8 11 14 17)(3 15 9)(6 18 12)(19 31 25)(20 23 26 29 32 35)(21 24 27 30 33 36)(22 34 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 20 10 29)(2 19 11 28)(3 36 12 27)(4 35 13 26)(5 34 14 25)(6 33 15 24)(7 32 16 23)(8 31 17 22)(9 30 18 21)
G:=sub<Sym(36)| (1,10)(2,14,8)(3,18,15,12,9,6)(4,13)(5,17,11)(7,16)(19,34,31,28,25,22)(20,29)(21,33,27)(23,32)(24,36,30)(26,35), (1,4,7,10,13,16)(2,5,8,11,14,17)(3,15,9)(6,18,12)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21)>;
G:=Group( (1,10)(2,14,8)(3,18,15,12,9,6)(4,13)(5,17,11)(7,16)(19,34,31,28,25,22)(20,29)(21,33,27)(23,32)(24,36,30)(26,35), (1,4,7,10,13,16)(2,5,8,11,14,17)(3,15,9)(6,18,12)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21) );
G=PermutationGroup([[(1,10),(2,14,8),(3,18,15,12,9,6),(4,13),(5,17,11),(7,16),(19,34,31,28,25,22),(20,29),(21,33,27),(23,32),(24,36,30),(26,35)], [(1,4,7,10,13,16),(2,5,8,11,14,17),(3,15,9),(6,18,12),(19,31,25),(20,23,26,29,32,35),(21,24,27,30,33,36),(22,34,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,20,10,29),(2,19,11,28),(3,36,12,27),(4,35,13,26),(5,34,14,25),(6,33,15,24),(7,32,16,23),(8,31,17,22),(9,30,18,21)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | 6B | ··· | 6G | 6H | ··· | 6M | 9A | 9B | 9C | 12A | ··· | 12H | 18A | 18B | 18C |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | 18 | 18 |
size | 1 | 1 | 3 | 3 | 2 | 3 | 3 | 18 | 18 | 18 | 18 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 24 | 24 | 24 | 18 | ··· | 18 | 24 | 24 | 24 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 |
type | + | + | + | - | + | + | - | + | - | |||||||||||
image | C1 | C2 | C3 | C4 | C6 | C12 | S3 | Dic3 | C3×S3 | C3×Dic3 | S4 | A4⋊C4 | C3×S4 | C3×A4⋊C4 | C9⋊C6 | C9⋊C12 | C32.S4 | C32.S4 | C62.Dic3 | C62.Dic3 |
kernel | C62.Dic3 | C2×C32.A4 | C6.S4 | C32.A4 | C2×C3.A4 | C3.A4 | C2×C62 | C62 | C22×C6 | C2×C6 | C3×C6 | C32 | C6 | C3 | C23 | C22 | C2 | C2 | C1 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 2 | 1 | 2 |
Matrix representation of C62.Dic3 ►in GL6(𝔽37)
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 36 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 1 | 36 |
0 | 1 | 0 | 0 | 0 | 0 |
36 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 1 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 36 | 1 |
0 | 0 | 1 | 36 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 36 |
0 | 0 | 0 | 0 | 1 | 0 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
35 | 13 | 0 | 0 | 0 | 0 |
11 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 26 | 35 |
0 | 0 | 0 | 0 | 24 | 11 |
0 | 0 | 26 | 35 | 0 | 0 |
0 | 0 | 24 | 11 | 0 | 0 |
G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,1,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,36,36],[0,36,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,0,36,0,0,0,0,1,1],[0,0,0,0,36,0,0,0,0,0,0,36,1,1,0,0,0,0,36,0,0,0,0,0,0,0,1,1,0,0,0,0,36,0,0,0],[35,11,0,0,0,0,13,2,0,0,0,0,0,0,0,0,26,24,0,0,0,0,35,11,0,0,26,24,0,0,0,0,35,11,0,0] >;
C62.Dic3 in GAP, Magma, Sage, TeX
C_6^2.{\rm Dic}_3
% in TeX
G:=Group("C6^2.Dic3");
// GroupNames label
G:=SmallGroup(432,249);
// by ID
G=gap.SmallGroup(432,249);
# by ID
G:=PCGroup([7,-2,-3,-2,-3,-3,-2,2,42,1683,682,192,2524,9077,782,5298,1350]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^2,d^2=b^2*c^3,c*a*c^-1=a*b=b*a,d*a*d^-1=a^4*b^3,c*b*c^-1=a^3*b^4,d*b*d^-1=a^3*b^2,d*c*d^-1=b^4*c^5>;
// generators/relations