Copied to
clipboard

G = C62.Dic3order 432 = 24·33

8th non-split extension by C62 of Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial

Aliases: C62.8Dic3, C3.A4⋊C12, C6.S4⋊C3, C6.7(C3×S4), (C3×C6).5S4, C32.A4⋊C4, C22⋊(C9⋊C12), C23.(C9⋊C6), C32.(A4⋊C4), (C2×C62).5S3, C2.1(C32.S4), (C2×C3.A4).C6, C3.1(C3×A4⋊C4), (C2×C32.A4).C2, (C22×C6).4(C3×S3), (C2×C6).2(C3×Dic3), SmallGroup(432,249)

Series: Derived Chief Lower central Upper central

C1C22C3.A4 — C62.Dic3
C1C22C2×C6C3.A4C2×C3.A4C2×C32.A4 — C62.Dic3
C3.A4 — C62.Dic3
C1C2

Generators and relations for C62.Dic3
 G = < a,b,c,d | a6=b6=1, c6=b2, d2=b2c3, cac-1=ab=ba, dad-1=a4b3, cbc-1=a3b4, dbd-1=a3b2, dcd-1=b4c5 >

Subgroups: 314 in 72 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2×C4, C23, C9, C32, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C18, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, 3- 1+2, Dic9, C3.A4, C3.A4, C3×Dic3, C62, C62, C6.D4, C3×C22⋊C4, C2×3- 1+2, C2×C3.A4, C2×C3.A4, C6×Dic3, C2×C62, C9⋊C12, C32.A4, C6.S4, C3×C6.D4, C2×C32.A4, C62.Dic3
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, C3×S3, S4, C3×Dic3, A4⋊C4, C9⋊C6, C3×S4, C9⋊C12, C3×A4⋊C4, C32.S4, C62.Dic3

Smallest permutation representation of C62.Dic3
On 36 points
Generators in S36
(1 10)(2 14 8)(3 18 15 12 9 6)(4 13)(5 17 11)(7 16)(19 34 31 28 25 22)(20 29)(21 33 27)(23 32)(24 36 30)(26 35)
(1 4 7 10 13 16)(2 5 8 11 14 17)(3 15 9)(6 18 12)(19 31 25)(20 23 26 29 32 35)(21 24 27 30 33 36)(22 34 28)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 20 10 29)(2 19 11 28)(3 36 12 27)(4 35 13 26)(5 34 14 25)(6 33 15 24)(7 32 16 23)(8 31 17 22)(9 30 18 21)

G:=sub<Sym(36)| (1,10)(2,14,8)(3,18,15,12,9,6)(4,13)(5,17,11)(7,16)(19,34,31,28,25,22)(20,29)(21,33,27)(23,32)(24,36,30)(26,35), (1,4,7,10,13,16)(2,5,8,11,14,17)(3,15,9)(6,18,12)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21)>;

G:=Group( (1,10)(2,14,8)(3,18,15,12,9,6)(4,13)(5,17,11)(7,16)(19,34,31,28,25,22)(20,29)(21,33,27)(23,32)(24,36,30)(26,35), (1,4,7,10,13,16)(2,5,8,11,14,17)(3,15,9)(6,18,12)(19,31,25)(20,23,26,29,32,35)(21,24,27,30,33,36)(22,34,28), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21) );

G=PermutationGroup([[(1,10),(2,14,8),(3,18,15,12,9,6),(4,13),(5,17,11),(7,16),(19,34,31,28,25,22),(20,29),(21,33,27),(23,32),(24,36,30),(26,35)], [(1,4,7,10,13,16),(2,5,8,11,14,17),(3,15,9),(6,18,12),(19,31,25),(20,23,26,29,32,35),(21,24,27,30,33,36),(22,34,28)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,20,10,29),(2,19,11,28),(3,36,12,27),(4,35,13,26),(5,34,14,25),(6,33,15,24),(7,32,16,23),(8,31,17,22),(9,30,18,21)]])

38 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B···6G6H···6M9A9B9C12A···12H18A18B18C
order1222333444466···66···699912···12181818
size11332331818181823···36···624242418···18242424

38 irreducible representations

dim11111122223333666666
type+++-++-+-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3S4A4⋊C4C3×S4C3×A4⋊C4C9⋊C6C9⋊C12C32.S4C32.S4C62.Dic3C62.Dic3
kernelC62.Dic3C2×C32.A4C6.S4C32.A4C2×C3.A4C3.A4C2×C62C62C22×C6C2×C6C3×C6C32C6C3C23C22C2C2C1C1
# reps11222411222244111212

Matrix representation of C62.Dic3 in GL6(𝔽37)

3600000
0360000
0013600
001000
0000036
0000136
,
010000
3610000
0003600
0013600
000001
0000361
,
0013600
001000
0000136
000010
3600000
0360000
,
35130000
1120000
00002635
00002411
00263500
00241100

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,1,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,36,36],[0,36,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,36,36,0,0,0,0,0,0,0,36,0,0,0,0,1,1],[0,0,0,0,36,0,0,0,0,0,0,36,1,1,0,0,0,0,36,0,0,0,0,0,0,0,1,1,0,0,0,0,36,0,0,0],[35,11,0,0,0,0,13,2,0,0,0,0,0,0,0,0,26,24,0,0,0,0,35,11,0,0,26,24,0,0,0,0,35,11,0,0] >;

C62.Dic3 in GAP, Magma, Sage, TeX

C_6^2.{\rm Dic}_3
% in TeX

G:=Group("C6^2.Dic3");
// GroupNames label

G:=SmallGroup(432,249);
// by ID

G=gap.SmallGroup(432,249);
# by ID

G:=PCGroup([7,-2,-3,-2,-3,-3,-2,2,42,1683,682,192,2524,9077,782,5298,1350]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^2,d^2=b^2*c^3,c*a*c^-1=a*b=b*a,d*a*d^-1=a^4*b^3,c*b*c^-1=a^3*b^4,d*b*d^-1=a^3*b^2,d*c*d^-1=b^4*c^5>;
// generators/relations

׿
×
𝔽